If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x-1332=0
a = 1; b = 3; c = -1332;
Δ = b2-4ac
Δ = 32-4·1·(-1332)
Δ = 5337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5337}=\sqrt{9*593}=\sqrt{9}*\sqrt{593}=3\sqrt{593}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{593}}{2*1}=\frac{-3-3\sqrt{593}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{593}}{2*1}=\frac{-3+3\sqrt{593}}{2} $
| x^2+2x-888=0 | | 3x-(2+x)=4 | | 3+4(2x-1)=5x-2 | | 3=24(2x-1)=5x-2 | | 2a+3a-12=68 | | 8*y=200 | | 4x+2=10×-1 | | 5n+35=70 | | 5(2-3x)=2-(x+1) | | 4f+7=41 | | 4n+1+n=36 | | 16-7x=-40 | | 9b-81=0 | | 39-5x=11 | | 8h-12=4h+60 | | 2(3–x)=15 | | x4+8x3+23x2+28x+9=0 | | f(40)=10-40/20 | | 12a+3=45-9a | | 5x+5=26+2× | | 5–2x=16-5x | | 25-x=1+5x | | 4x-5=52 | | 25+3x=7 | | (2x-19)(x-6)=14 | | 11-4t=63 | | x^2+8x-149=0 | | 2a-1=3a-2 | | 8a+4=3a-3+7 | | -x+(x+1)+(x+2)+(x+3)=-46 | | 2a+15=3a+10 | | 2^b=32 |